Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.575
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38354993

RESUMO

Sodium dichloroisocyanurate (NaDCC, C3Cl2N3NaO3) is a solid chlorine-containing product that is widely used as a disinfectant in living environments, which has potential toxic effects on human and rats. Phascolosoma esculenta is a species native to the southeast coast of China and can be used as an indicator organism. In the present study, 150 P. esculenta were used to determine the LC50 of NaDCC for P. esculenta, then 100 P. esculenta were used to analysis the change of histopathology, oxidative stress and transcriptome after NaDCC exposure. The results showed that the LC50 of NaDCC for 48 h was 50 mg/L. NaDCC stress induced pathological events in P. esculenta, including blisters, intestinal structural damage and epithelial cell ruptured or even loss. The highest and lowest intestinal activity of superoxide dismutase in individual survivors was detected at 12 h and 72 h, respectively. Malondialdehyde levels in the intestine declined gradually from 3 h and increased at 9 h, and peaked at 12 h. Total antioxidant capacity declined at 3 h and dropped below the levels of control group after 9 h. Transcriptome sequencing analysis yielded a total of 48.65 Gb of clean data. A total of 34,759 new genes were found including 957 differentially expressed genes (DEGs). The DEGs were significantly enriched in ferroptosis, response to chemicals, response to stress, immune system, ion transport, cell death, oxidation-reduction, cellular homeostasis, protein ubiquitination, and protein neddylation. Additionally, the levels of detoxification enzymes, such as glutathione-S-transferase, cytochrome P450, ABC, UDP-glycosyltransferase and SLC transporters of endogenous and exogenous solutes were significantly changed. Overall, the results provide reference for reasonable use of disinfectants during farming, and also provide insight into the mechanisms related to NaDCC toxicity in P. esculenta.


Assuntos
Desinfetantes , Triazinas , Humanos , Animais , Ratos , Desinfetantes/toxicidade , Desinfetantes/química , Intestinos , Estresse Oxidativo , Perfilação da Expressão Gênica
2.
Chemosphere ; 352: 141404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342148

RESUMO

Antibiotic residues and their chlorinated disinfection by-products (Cl-DBPs) have adverse effects on organisms in aquaculture water. Taking enrofloxacin (ENR) as target antibiotic, this study investigated the degradation and transformation of ENR Cl-DBPs in constructed wetlands (CWs). Results showed that, ENR and its Cl-DBPs affected the biodegradation of CWs at the preliminary stage, but did not affect the adsorption by plant roots, substrates, and biofilms. The piperazine group of ENR had great electronegativity, and was prone to electrophilic reactions. The carboxyl on quinolone group of ENR had strong nucleophilicity, and was prone to nucleophilic reactions. C atoms with significant negative charges on the aromatic structure of quinolone group were prone to halogenation. During the chlorination of ENR, one pathway was the reaction of quinolone group, in which nucleophilic substitution reaction by chlorine occurred at C26 atom on carboxyl group, then halogenation occurred under the action of Cl+ at C17 site on the aromatic ring; the other pathway was the reaction of piperazine group, in which N7 atom was firstly attacked by HOCl, resulting in piperazine ring cleavage, then followed by deacylation, dealkylation, and halogenation. During the biodegradation of ENR Cl-DBPs, the reactivity of piperazine structure was strong, especially at N6, N7, C13, and C14 sites, while the ring structure of quinolone group was quite stable, and only occurred decyclopropyl at N5 site. Overall, the biodegradation of ENR Cl-DBPs in CWs went through processes including piperazine ring cleavage, tertiary amine splitting, dealkylation, and aldehyde oxidation under the action of coenzymes, in which metabolites such as ketones, aldehydes, carboxylic acids, amides, primary amines, secondary amines, tertiary amines and acetaldehyde esters were produced. Most ENR Cl-DBPs had greater bioaccumulation potential and stronger toxicity than their parent compound, fortunately, CWs effectively reduced the environmental risk of ENR Cl-DBPs through the cooperation of adsorption and biodegradation.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Enrofloxacina , Desinfecção/métodos , Halogenação , Áreas Alagadas , Antibacterianos/química , Aminas , Purificação da Água/métodos , Piperazinas , Poluentes Químicos da Água/análise , Cloro/química , Desinfetantes/química
3.
J Appl Microbiol ; 135(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373840

RESUMO

AIMS: This study investigated the antimicrobial efficacy of ultrasound technology (US) in combination with two different disinfectants (Disinfectant A and Disinfectant B), containing peracetic acid (PAA) and quaternary ammonium compounds (QACs), respectively, against two sporigenic pathogens, Aspergillus brasiliensis and Bacillus subtilis. METHODS AND RESULTS: The microbicidal activity of the coupled treatment was compared with the use of the disinfectants alone, and the efficacy of the disinfection strategies was evaluated by the log reduction of the population of the microorganism inoculated onto stainless-steel surface. The combination treatment resulted in a log reduction of 5.40 and 3.88 (Disinfectant A + US) against A. brasiliensis and B. subtilis, at 850 and 500 ppm PAA, compared to 265 and 122 (Disinfectant A only). For Disinfectant B, in combination with US, showed a logarithmic reduction of 5.04 and 4.79 against A. brasiliensis and B. subtilis at 078% v v-1 and 392% v v-1 QACs, respectively, vs. 1.58 and 1.64 (Disinfectant B only). Moreover, no colonies or not statistically significant growth was observed within the US bath containing the disinfectant. CONCLUSIONS: The antimicrobial efficacy of the two disinfectants was greatly enhanced when used in combination with US, and this also makes it possible to avoid the overuse of chemicals for disinfection.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Desinfetantes/química , Ácido Peracético/farmacologia , Desinfecção/métodos , Bacillus subtilis
4.
Environ Sci Pollut Res Int ; 31(11): 16437-16452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319423

RESUMO

Halonitromethanes (HNMs), a representative nitrogen-containing disinfection byproduct, have gained significant concerns due to their higher cytotoxicity and genotoxicity. UV/chlorination is considered a promising alternative disinfection technology for chlorination. This study aimed to investigate the HNMs formation from benzylamine (BZA) during UV/chlorination. The experimental results revealed that the yields of HNMs initially raised to a peak then dropped over time. Higher chlorine dosage and BZA concentration promoted the formation of HNMs, whereas alkaline pH inhibited their formation. The presence of bromine ion (Br-) not only converted chlorinated-HNMs (Cl-HNMs) to brominated (chlorinated)-HNMs Br (Cl)-HNMs) and brominated-HNMs (Br-HNMs) but also enhanced the total concentration of HNMs. Besides, the calculated cytotoxicity index (CTI) and genotoxicity index (GTI) of HNMs were elevated by 68.97% and 60.66% as Br- concentration raised from 2 to 6 µM. The possible formation pathways of HNMs from BZA were proposed based on the intermediates identified by a gas chromatography/mass spectrometry (GC/MS). In addition, the formation rules of HNMs in actual water verified the results in deionized water during UV/chlorination. The results of this study provide basic data and a theoretical basis for the formation and control of HNMs, which is conducive to applying UV/chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Halogenação , Desinfetantes/química , Desinfecção/métodos , Cloro/química , Água , Benzilaminas/análise , Poluentes Químicos da Água/análise
5.
Water Res ; 251: 121153, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38246080

RESUMO

The chlorination of extracellular polymeric substances (EPS) secreted by biofilm often induces the formation of high-toxic disinfection byproducts (DBPs) in drinking water distribution systems. The protein components in EPS are the main precursors of DBPs, which mostly exist in the form of combined amino acids. The paper aimed to study the action of a pipe corrosion product (Cu2+) on the formation of DBPs (trihalomethanes, THMs; haloacetonitriles, HANs) with aspartic acid tetrapeptide (TAsp) as a precursor. Cu2+ mainly promoted the reaction of oxidants with TAsp (i.e., TAsp-induced decay) to produce DBPs, rather than self-decay of oxidants to generate BrO3‒ and ClO3‒. Cu2+ increased THMs yield, but decreased HANs yield due to the catalytic hydrolysis. Cu2+ was more prone to promote the reaction of TAsp with HOCl than with HOBr, leading to a DBPs shift from brominated to chlorinated species. The chemical characterizations of Cu2+-TAsp complexations demonstrate that Cu2+ combined with TAsp at the N and O sites in both amine and amide groups, and the intermediate identification suggests that Cu2+ enhanced the stepwise chlorination process by promoting the substitution of chlorine and the breakage of CC bonds. The effect of Cu2+ on THMs yield changed from promoting to inhibiting with the increase of pH, while that on HANs yield was inhibiting regardless of pH variation. Additionally, the impact of Cu2+ on the formation of DBPs was also affected by Cu2+ dose, Cl2/C ratio and Br- concentration. This study helps to understand the formation of EPS-derived DBPs in water pipes, and provides reference for formulating control strategies during biofilm outbreaks.


Assuntos
Desinfetantes , Fumar Cachimbo de Água , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/química , Cobre , Ácido Aspártico , Halogenação , Trialometanos , Oxidantes , Poluentes Químicos da Água/análise , Desinfecção , Cloro/química
6.
Environ Pollut ; 344: 123310, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190872

RESUMO

Disinfection by-products (DBPs) formed from chlorination of antibiotics have greater toxicity than their parent compounds. Herein, this study investigated the biotransformation process of sulfadiazine Cl-DBPs in constructed wetlands (CWs). Results showed that, S atom on sulfonyl group, and N atoms on primary and secondary amine groups were the most reactive sites of sulfadiazine molecule. S1-N4 and S1-C8 of sulfadiazine are the most vulnerable bonds to cleave, followed by C14-N4 and C11-N5 bonds. In the chlorination process, sulfadiazine went through C-N bond cleavage, N-reductive alkylation, halogenation, and desulfonation to produce two aromatic Cl-DBPs. In the biodegradation process in CWs, sulfadiazine Cl-DBPs went through processes mainly including dechlorination, S-N bond cleavage, aniline-NH2 oxidation, desulfonation, phenol-OH oxidation, benzene ring cleavage, C-N bond cleavage, and ß-oxidation of fatty acids under the action of a variety of oxidoreductases and hydrolases, during which a total of ten biodegradation products was identified. Moreover, sulfadiazine affected the biodegradation rather than the adsorption process in CWs. The two aromatic sulfadiazine Cl-DBPs had much higher bioaccumulation potentials than their parent sulfadiazine, but for the ten biodegradation products of sulfadiazine Cl-DBPs in CWs, 70% and almost 100% of them had lower bioaccumulation potentials than sulfadiazine and their parent sulfadiazine Cl-DBPs, respectively. The CWs were effective in reducing the environmental risk of sulfadiazine Cl-DBPs.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Halogenação , Sulfadiazina , Áreas Alagadas , Biodegradação Ambiental , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Desinfetantes/química , Cloro/química
7.
Chemosphere ; 350: 141117, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184079

RESUMO

Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety. Here we present the results of the comparative study of one-electron oxidation and aqueous chlorination of several aliphatic and aromatic amines. The reaction products were reliably identified with gas chromatography - high resolution mass spectrometry (GC-HRMS), high pressure liquid chromatography - electrospray ionization high resolution mass spectrometry HPLC-ESI/HRMS), and electrochemistry - electrospray ionization high resolution mass spectrometry (EC-ESI/HRMS). Certain similarities dealing with the formation of the corresponding aldehydes and substitution of alkyl groups at the nitrogen atom for hydrogen were shown for the studied processes. The mechanism of the substituted amines' aqueous chlorination involving one-electron oxidation is proposed and confirmed by the array of the observed reaction products. Alternative reactions taking place in conditions of aqueous chlorination, i.e. aromatic electrophilic substitution, may successfully compete with dealkylation and produce major products.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Água , Aminas , Halogenação , Remoção de Radical Alquila , Nitrogênio/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Cloro/química , Desinfetantes/química
8.
Environ Sci Pollut Res Int ; 31(2): 2314-2326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057675

RESUMO

Water treatment for most public pools involves disinfection with active chlorine leading to the formation of disinfection by-products (DBPs). Among them, nitrogen-containing compounds (N-DBPs) having increased toxicity and adverse effects on human health are of the greatest concern. Being the major component of various body washers for swimmers, cocamidopropyl betaine (CAPB) represents a potential and still underestimated anthropogenic precursor of N-DBPs in pool water. The purpose of this study was to investigate CAPB transformation pathways and mechanisms under the aqueous chlorination conditions. High-performance liquid and two-dimensional gas chromatography hyphenated with high-resolution mass spectrometry were used for the search and tentative identification of the primary and final CAPB transformation products. A wide range of DBPs containing up to five chlorine atoms including these in combination with hydroxyl and additional carbonyl groups has been revealed in model chlorination experiments for the first time. The proposed mechanism of their formation involves nucleophilic substitution of the secondary amide hydrogen atom at the first stage with subsequent free radical and electrophilic addition reactions resulting in non-selective introduction of halogen atoms and hydroxyl groups in the alkyl chain. The deep transformation products include short-chain chlorinated hydrocarbons and their oxidation products as well as dimethylcarbamoyl chloride possessing high toxicity and carcinogenic properties. Targeted analysis of real swimming pool water samples confirmed the results of model experiments enabling semi-quantitative determination of CAPB (0.8 µg L-1) and 18 primary DBPs, including 10 chlorine-containing compounds with the total concentration of 0.1 µg L-1. Among them, monochloro (50%) and hydroxydichloro (25%) derivatives predominate. The toxicity and health of the main DBPs has been estimated using QSAR/QSTR approach. Thus, the possibility of formation of new classes of potentially toxic chlorine-containing DBPs associated with the widespread use of detergents and cosmetics was shown.


Assuntos
Betaína/análogos & derivados , Compostos Clorados , Desinfetantes , Hidrocarbonetos Clorados , Piscinas , Poluentes Químicos da Água , Purificação da Água , Humanos , Desinfecção , Desinfetantes/química , Cloro/química , Nitrogênio/análise , Hidrocarbonetos Clorados/análise , Compostos Clorados/análise , Halogenação , Compostos de Nitrogênio , Cloretos , Poluentes Químicos da Água/análise
9.
Chemosphere ; 349: 140807, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029937

RESUMO

Permanganate is a common preoxidant applied in water treatment to remove organic pollutants and to reduce the formation of disinfection by-products. However, the effect of permanganate preoxidation on the transformation of dissolved effluent organic matter (dEfOM) and on the formation of unknown chlorinated disinfection by-products (Cl-DBPs) during chlorination remains unknown at molecular level. In this work, the molecular changes of dEfOM during permanganate preoxidation and subsequent chlorination were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Permanganate preoxidation was found to decrease the DBE (double bond equivalent) and AImod (modified aromaticity index) of the dEfOM. The identity and fate of over 400 unknown Cl-DBPs during KMnO4-chlorine treatment were investigated. Most Cl-DBPs and the precursors were found to be highly unsaturated aliphatic and phenolic compounds. The Cl-DBPs precursors with lower H/C and lower O/C were preferentially removed by permanganate preoxidation. Additionally, permanganate preoxidation decreased the number of unknown Cl-DBPs by 30% and intensity of unknown Cl-DBPs by 25%. One-chlorine-containing DBPs were the major Cl-DBPs and had more CH2 groups and higher DBEw than Cl-DBPs containing two and three chlorine atoms. 60% of the Cl-DBPs formation was attributed to substitution reactions (i.e., +Cl-H, +2Cl-2H, +3Cl-3H, +ClO-H, +Cl2O3-2H). This work provides detailed molecular level information on the efficacy of permanganate preoxidation on the control of overall Cl-DBPs formation during chlorination.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Matéria Orgânica Dissolvida , Halogenação , Cloro/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Desinfetantes/química
10.
Environ Sci Technol ; 58(3): 1700-1708, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154042

RESUMO

Ozonation is universally used during water treatment but can form hazardous brominated disinfection byproducts (Br-DBPs). While sunlight exposure is advised to reduce the risk of Br-DBPs, their phototransformation pathways remain insufficiently understood. Here, sunlight irradiation was found to reduce adsorbable organic bromine by 63%. Applying high-resolution mass spectrometry, the study investigated transformations of dissolved organic matter in sunlit-ozonated reclaimed water, revealing the number and abundance of assigned formulas decreased after irradiation. The Br-DBPs with O/C < 0.6 and MW > 400 Da were decreased or removed after irradiation, with the majority being CHOBr compounds. The peak intensity reduction ratio of CHOBr compounds correlated positively with double bound equivalent minus oxygen ratios but negatively with O/C, suggesting that photo-susceptible CHOBr compounds were highly unsaturated. Mass difference analysis revealed that the photodegradation pathways were mainly oxidation aligned with debromination. Three typical CHOBr molecular structures were resolved, and their photoproducts were proposed. Toxicity estimates indicated decreased toxicity in these photoproducts compared to their parent compounds, in line with experimentally determined values. Our proposed phototransformation pathways for Br-DBPs enhance our comprehension of their degradation and irradiation-induced toxicity reduction in reclaimed water, further illuminating their transformation under sunlight in widespread environmental scenarios.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Desinfetantes/análise , Desinfetantes/química , Desinfetantes/toxicidade , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodos
11.
Chemosphere ; 349: 140985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104740

RESUMO

Amino acids are the main components of dissolved organic nitrogen in algal- and wastewater-impacted waters, which can react with chlorine to form toxic halogenated disinfection by-products (DBPs) in the disinfection process. In the presence of bromide, the reaction between amino acids and secondarily formed hypobromous acid can lead to the formation of brominated DBPs that are more toxic than chlorinated analogues. This study compares the formation of regulated and unregulated DBPs during chlorination and bromination of representative amino acids (AAs) (e.g., aspartic acid, asparagine, tryptophan, tyrosine, and histidine). In general, concentrations of brominated DBPs (trihalomethanes, haloacetonitriles, and haloacetamides, 24.9-5835.0 nM) during bromination were higher than their chlorinated analogues (9.3-3235.3 nM) during chlorination. This indicates the greater efficacy of bromine as a halogenating agent. However, the formation of chlorinated haloacetic acids during chlorination was higher than the corresponding brominated DBPs from bromination. It is likely that an oxidation pathway is required for the formation of haloacetic acids and chlorine is a stronger oxidant than bromine. Moreover, chlorine forms higher levels of haloacetaldehydes (74.4-1077.8 nM) from amino acids than bromine (1.0-480.2 nM) owing to the instability of brominated species. The DBP formation yields depend on the types of functional groups in the side chain of AAs. Eight intermediates resulting from chlorination/bromination of tyrosine were identified by triple quadrupole mass spectrometer, including N-chlorinated/brominated tyrosine, 3-chloro/bromo-tyrosine, and 3,5-dichloro/dibromo-tyrosine. These findings provided new insights into the DBP formation during the chlorination of algal- and wastewater-impacted waters with elevated bromide.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Halogenação , Desinfetantes/química , Bromo , Brometos/química , Cloro/química , Aminoácidos , Águas Residuárias , Tirosina , Poluentes Químicos da Água/análise , Purificação da Água/métodos
12.
Environ Sci Technol ; 58(1): 704-716, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38109774

RESUMO

With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17ß-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by ∼4-6 orders of magnitude for 17ß-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were ∼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Águas Residuárias , Estrona , Diclofenaco/análise , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfetantes/química , Estrogênios , Água Potável/análise , Água Potável/química , Estradiol , Purificação da Água/métodos
13.
Water Res ; 250: 121078, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159540

RESUMO

Disinfection is vital in ensuring water safety. However, the traditional chlorine disinfection process is prone to producing toxic and harmful disinfection by-products (DBPs). The combination of quaternary ammonium polymer and the chlorine disinfection process can solve this shortcoming. Currently, research on the control of DBPs through the combined process is not systematic and the control effect between reducing the dosage of disinfectants and DBPs remains to be studied. Quaternized cyclodextrin polymers have attracted increasing attention due to their excellent adsorption and antibacterial properties, but their synergistic effect with chlorine disinfection is still unclear. In this study, a magnetic quaternized cyclodextrin polymer (MQCDP) is synthesized in an ionic liquid green system, and a combined process of MQCDP treatment and chlorine disinfection is established. The disinfection performance of the combined process on the actual water body along with its reducing effect on the amount of chlorine disinfectant as well as the trihalomethanes (THMs) and haloacetic acids (HAAs) DBPs are explored. MQCDP has a porous structure with a specific surface area of 825 m2 g-1 and is easily magnetically separated. MQCDP can remove most of the natural organic matter (UV254 absorbance decreased by 97 %) in the water at the dosage of 1 g L-1 and kill bacteria with a sterilization rate of 85 %. Compared with disinfection using chlorine alone, the combined process has higher disinfection efficiency and significantly reduces the amount of disinfectant used. A concentration of 5 mg/L of NaClO was needed to meet the standard by chlorine disinfectant alone, while only 2 mg/L of NaClO can meet the standard for the combined process, indicating 60 % of the chlorine demand was reduced. More importantly, the combined process can significantly reduce the generation potential of DBPs. When 10 mg/L of NaClO is added, the THMs and HAAs generated by the combined process decreased by 65 % and 34 %, respectively, compared with the levels produced by single chlorine disinfection. The combined process can reduce the dosage of chlorine disinfectant and MQCDP can adsorb humic acid DBP precursors in raw water, thus lowering the generation of DBPs during disinfection. In summary, MQCDP has excellent separation and antibacterial ability, and its synergistic effects combined with the chlorine disinfection process are of great significance for controlling the amount of disinfectant and the formation potential of DBPs, which has potential applications in actual water treatment.


Assuntos
Celulose , Ciclodextrinas , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cloro/química , Desinfetantes/química , Cloretos/química , Halogenação , Trialometanos/química , Antibacterianos/farmacologia , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
14.
Food Environ Virol ; 15(4): 265-280, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906416

RESUMO

Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.


Assuntos
Produtos Biológicos , Desinfetantes , Vírus , Desinfetantes/farmacologia , Desinfetantes/química , Produtos Biológicos/farmacologia , Desinfecção/métodos , Antivirais/farmacologia , Antivirais/química
15.
Environ Sci Technol ; 57(44): 16823-16833, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874250

RESUMO

Haloacetaldehydes (HALs) represent the third-largest category of disinfection byproducts (DBPs) in drinking water in terms of weight. As a subset of unregulated DBPs, only a few HALs have undergone assessment, yielding limited information regarding their genotoxicity mechanisms. Herein, we developed a simplified yeast-based toxicogenomics assay to evaluate the genotoxicity of five specific HALs. This assay recorded the protein expression profiles of eight Saccharomyces cerevisiae strains fused with green fluorescent protein, including all known DNA damage and repair pathways. High-resolution real-time pathway activation data and protein expression profiles in conjunction with clustering analysis revealed that the five HALs induced various DNA damage and repair pathways. Among these, chloroacetaldehyde and trichloroacetaldehyde were found to be positively associated with genotoxicity, while dichloroacetaldehyde, bromoacetaldehyde, and tribromoacetaldehyde displayed negative associations. The protein effect level index, which are molecular end points derived from a toxicogenomics assay, exhibited a statistically significant positive correlation with the results of traditional genotoxicity assays, such as the comet assay (rp = 0.830 and p < 0.001) and SOS/umu assay (rp = 0.786 and p = 0.004). This yeast-based toxicogenomics assay, which employs a minimal set of gene biomarkers, can be used for mechanistic genotoxicity screening and assessment of HALs and other chemical compounds. These results contribute to bridging the knowledge gap regarding the molecular mechanisms underlying the genotoxicity of HALs and enable the categorization of HALs based on their distinct DNA damage and repair mechanisms.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Saccharomyces cerevisiae/genética , Toxicogenética/métodos , Purificação da Água/métodos , Dano ao DNA , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfetantes/química
16.
Environ Sci Technol ; 57(47): 19043-19053, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37710978

RESUMO

Previous studies showed that cupric oxide (CuO) can enhance the formation of trihalomethanes (THMs), haloacetic acids, and bromate during chlorination of bromide-containing waters. In this study, the impact of CuO on the formation kinetics and mechanisms of halogenated disinfection byproducts (DBPs) during chlorination was investigated. CuO does not enhance the formation of DBPs (i.e., 1,1,1-trichloropropanone, chloroform, and trichloroacetaldehyde (TCAL) /dichloroacetonitrile) during chlorination of acetone, 3-oxopentanedioic acid (3-OPA), and aspartic acid, respectively. This indicates that the halogen substitution pathway cannot be enhanced by CuO. Instead, CuO (0.1 g L-1) accelerates the second-order rate constants for reactions of chlorine (HOCl) with TCAL, citric acid, and oxalic acid at pH 8.0 and 21 °C from <0.1 to 29.4, 7.2, and 15.8 M-1 s-1, respectively. Oxidation pathway predominates based on the quantification of oxidation products (e.g., a trichloroacetic acid yield of ∼100% from TCAL) and kinetic modeling. CuO can enhance the formation of DBPs (e.g., THMs, haloacetaldehydes, and haloacetonitriles) during chlorination of model compounds and dissolved organic matter, of which both halogen substitution and oxidation pathways are required. Reaction rate constants of rate-limiting steps (e.g., citric acid to 3-OPA, aromatic ring cleavage) could be enhanced by CuO via an oxidation pathway since CuO-HOCl complex is more oxidative toward a range of substrates than HOCl in water. These findings provide novel insights into the DBP formation pathway in copper-containing distribution systems.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Cobre , Halogenação , Desinfetantes/química , Trialometanos , Cloro , Poluentes Químicos da Água/análise , Ácido Cítrico
17.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37580171

RESUMO

AIMS: To provide an alternative to ultra violet light and vapourized hydrogen peroxide to enhance decontamination of surfaces as part of the response to the COVID-19 pandemic. METHODS AND RESULTS: We developed an indirect method for in situ delivery of cold plasma and evaluated the anti-viral activity of plasma-activated mist (PAM) using bacteriophages phi6, MS2, and phiX174, surrogates for SARS-CoV-2. Exposure to ambient air atmospheric pressure derived PAM caused a 1.71 log10 PFU ml-1 reduction in phi6 titer within 5 min and a 7.4 log10 PFU ml-1 reduction after 10 min when the the PAM source was at 5 and 10 cm. With MS2 and phiX174, a 3.1 and 1.26 log10 PFU ml-1 reduction was achieved, respectively, after 30 min. The rate of killing was increased with longer exposure times but decreased when the PAM source was further away. Trace amounts of reactive species, hydrogen peroxide and nitrite were produced in the PAM, and the anti-viral activity was probably attributable to these and their secondary reactive species. CONCLUSIONS: PAM exhibits virucidal activity against surrogate viruses for COVID-19, which is time and distance from the plasma source dependent.


Assuntos
Bacteriófagos , Desinfecção , Peróxido de Hidrogênio , Nitritos , Gases em Plasma , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/fisiologia , COVID-19/virologia , Desinfetantes/química , Desinfecção/métodos , Peróxido de Hidrogênio/farmacologia , Nitritos/farmacologia , Gases em Plasma/farmacologia , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Oxigênio/análise , SARS-CoV-2/fisiologia , Água/química , Microbiologia do Ar
18.
Environ Sci Technol ; 57(32): 12063-12071, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531609

RESUMO

The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3-) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3- can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2-) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2- mixture used for its generation through a trap containing ClO2- can scavenge chlorine, substantially reducing ClO3- concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3- formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3- concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.


Assuntos
Compostos Clorados , Desinfetantes , Purificação da Água , Desinfecção , Cloratos , Cloro , Compostos Clorados/química , Óxidos/química , Desinfetantes/química
19.
Environ Sci Technol ; 57(30): 11251-11258, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459399

RESUMO

Nitrogen-containing disinfection byproducts (N-DBPs) are highly toxic DBPs in drinking water. Though, under normal conditions, NO3- could not directly participate in disinfection reactions to generate N-DBPs, here, we first found that NO3- could promote the formation of N-DBPs in corroded iron drinking water pipes. The coexistence of corrosion produced Fe(II) and iron oxides is a critical condition for the transformation of N species; meanwhile, most of the newly generated N-DBPs had aromatic fractions. The Fe-O-C bond formed between iron corrosion products and natural organic matter promoted electron transfer for the N transformation with pyrrolic N as the intermediate N species. Density functional calculation confirmed that the coexistence of Fe(II) and iron oxides effectively reduced the Gibbs free energy for NO3- reduction. ΔG of the key rate-determining step from NO* to NOH* decreased from 1.55 eV on FeOOH to 1.35 eV on Fe(II)+FeOOH. In addition, the large decrease of cell viability of the water samples from 74.3% to 45.4% further confirmed the formation of highly toxic N-DBPs. Thus, in a drinking water distribution system with corroded iron pipes, the low toxic NO3- may increase toxicity risks via N-DBP formation.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Ferro , Desinfetantes/análise , Desinfetantes/química , Nitrogênio/análise , Halogenação , Compostos Ferrosos , Poluentes Químicos da Água/análise
20.
Water Res ; 243: 120366, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494746

RESUMO

Trace organic contaminants usually go through multiple treatment units in a modern water treatment train. Structural modification triggered by pretreatment (e.g., prechlorination) may influence the further transformation and fate of contaminants in downstream units. However, knowledge on this aspect is still limited. In this contribution, we investigated the chlorination of chloroxylenol (PCMX), an antimicrobial agent extensively used during COVID-19 pandemic, and the photoreactivity of its halogenated derivatives. Results indicate that chlorination of PCMX mainly proceeded through electrophilic substitution to give chlorinated products, including Cl- and 2Cl-PCMX. The presence of bromide (Br-) resulted in brominated analogues. Owing to the bathochromic and "heavy atom" effects of halogen substituents, these products show increased light absorption and photoreactivity. Toxicity evaluation suggest that these halo-derivatives have higher persistence, bioaccumulation, and toxicity (PBT) than the parent PCMX. Results of this contribution advance our understanding of the transformation of PCMX during chlorination and the photochemical activity of its halogenated derivatives in subsequent UV disinfection process or sunlit surface waters.


Assuntos
COVID-19 , Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Humanos , Halogenação , Pandemias , Poluentes Químicos da Água/química , Desinfecção/métodos , Desinfetantes/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...